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Exosomes are extracellular vesicles of endosomal origin which have emerged as key mediators of intercellular communication. All major car-
diac cell types—including cardiomyocytes, endothelial cells, and fibroblasts—release exosomes that modulate cellular functions. Exosomes
released from human cardiac progenitor cells (CPCs) are cardioprotective and improve cardiac function after myocardial infarction to an ex-
tent comparable with that achieved by their parent cells. Cardiac progenitor cell-derived exosomes are enriched in cardioprotective micro-
RNAs, particularly miR-146a-3p. Circulating exosomes mediate remote ischaemic preconditioning. Moreover, they currently are being
investigated as diagnostic markers. The discovery that cell-derived extracellular signalling organelles mediate the paracrine effects of stem cells
suggests that cell-free strategies could supplant cell transplantation. This review discusses emerging roles of exosomes in cardiovascular physi-
ology, with a focus on cardioprotective activities of CPC-derived exosomes.
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Introduction
Ischaemic heart disease is associated with loss of cardiomyocytes,
ultimately leading to pump failure in a substantial proportion of pa-
tients. Over the past 15 years, cell transplantation has been evalu-
ated as an approach for the disease.1 While an early study in mice
reported that haematopoietic stem cells injected in infarcted hearts
differentiated into cardiomyocytes and enhanced cardiac function,2

subsequent studies failed to confirm these findings.3 Despite this
controversial experimental foundation, clinical trials of bone mar-
row cell transplantation in patients after acute myocardial infarction
(MI) were initiated quickly, demonstrating feasibility and suggestive
of possible benefits.4 However, the conclusion that bone marrow
cell transplantation improves function has been questioned.5 Re-
cently, mesenchymal stem cells (MSCs) and cardiac progenitor cells
(CPCs) have been evaluated as alternate cellular sources. In a
phase-I clinical trial in patients after acute MI, intramyocardial injec-
tion of autologous cardiosphere-derived cells (CDCs), obtained
from spontaneously forming spherical aggregates of CPCs in vitro,6

was safe and provided promising results.7 Although by definition
CPCs can produce new cardiomyocytes, the actual mechanism of
benefit in vivo is indirect: transplanted cells are not found in the heart
at late time points post-delivery and, after injection of human CDCs
in infarcted mouse hearts, �90% of newly formed cardiomyocytes
and endothelial cells (ECs) are of endogenous origin.8 Likewise,

c-kit+CPCs generate vanishingly few mature cardiomyocytes but
stimulate the proliferation of endogenous cells in the heart, which
persists for at least 1 year post-injury.9 Thus, exogenous cell trans-
plantation augments endogenous repair via paracrine factors. While
these factors were first thought to be small proteins and cyto-
kines,8,10 we have recently shown that extracellular vesicles (EVs)
figure prominently in the bioactivity of human CPCs.11,12 Injected
CDC-derived EVs in infarcted mouse hearts reproduced the benefit
of CDC administration, and blockade of exosome secretion nullified
CDC bioactivity. Thus, EV-based cell-free strategies could supplant
cell transplantation. This review discusses emerging roles of EVs in
cardiovascular physiology, with a focus on EV-mediated cardiopro-
tection. Potential roles of exosomes as diagnostic markers will also
be addressed. To contextualize functions of EVs in cardiac physi-
ology within the broader field of vesicle biology, EV biogenesis is
summarized in the following section.

Extracellular vesicle
subpopulations
Cells secrete EVs of various sizes and intracellular origins, including
exosomes, microvesicles, and apoptosomes. Extracellular vesicle
populations were traditionally categorized by size, but recognition
of differential biogenesis has become an additional qualifier of
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identity. Exosomes (diameter range: 30–150 nm) are EVs of endo-
somal origin. Microvesicles (diameter range: 50–1000 nm) arise by
direct budding from plasma membranes of injured or transformed
cells. Various stimuli—including intracellular calcium concentration
and lipopolysaccharide (LPS)—trigger microvesicle shedding.13

Apoptosomes (diameter range: 50–5000 nm) originate as frag-
ments of cells undergoing programmed death.

Proteomic comparisons have identified novel markers for the
characterisation of heterogeneous EV populations.14 Extracellular
vesicles were subdivided into large, medium-sized, and small vesicles
pelleting at low (2000 × g), intermediate (10 000 × g), and high
(100 000 × g) sedimentation speeds, respectively, the last being
the fraction classically considered as containing exosomes. Small
(,200 nm) EV preparations contained both exosomal and non-
exosomal subpopulations, which were further subdivided into: (i)
bona fide exosomes co-enriched in exosome (CD63, CD81, CD9)
and endosome markers (syntenin-1, tumour susceptibility
gene-101); (ii) small EVs devoid of CD63/CD81 but enriched in
CD9; (iii) small EVs devoid of CD63/CD9/CD81; (iv) small EVs en-
riched in extracellular matrix proteins or serum-derived factors. For

now, it is important to recognize that the nomenclature tends to be
used rather loosely, and that it may be difficult in practice to distin-
guish exosomes from other EVs.

Exosome biogenesis
Secretion of exosomes has been demonstrated across eukaryotes
from amoeboid protists to fungi, plants, and animals. Exosomes ori-
ginate from multivesicular bodies (MVBs) that arise from invagina-
tions of the plasma membrane fusing to molecular cargoes sorted
into the endoplasmic reticulum and processed in the Golgi complex.
When MVBs fuse to the plasma membrane, exosomes are released
into the extracellular space; however, some of the MVBs merge with
lysosomes for degradation, rather than being secreted (Figure 1).
Exosomes released from different cell types transport distinct lipid,
protein and nucleic acid cargoes. They also contain cytokines,
pathogen-associated and damage-associated molecular patterns,
and autoantigens. Endosomal-sorting complex required for trans-
port is a central component of the molecular machinery of exosome
formation. Protein and RNA sorting into exosomes are highly

Figure 1 Exosome biogenesis. Endosomes originate by internal budding of plasma membranes. They contain proteins from plasma membranes
and from the Golgi complex, and nucleic acids. Multivesicular bodies containing late endosomes fuse with the plasma membrane or undergo lyso-
somal degradation. The endosomal-sorting complex required for transport facilitates protein sorting into exosomes. Exosomes are internalized by
recipient cells, transfer activated receptors to cell surfaces, or bind to surface receptors to activate signalling pathways.
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regulated processes that allow cells to release exosomes with vary-
ing characteristics depending on the molecular signals that induce
their production. Protein sorting mechanisms involve interactions
between CD63, other trans-membrane proteins, the multivalent
adaptor syntenin, and Alix.15 Specific motifs present in certain mi-
croRNAs (miRs) facilitate their incorporation into exosomes
through binding to chaperon proteins.16 Post-transcriptional modi-
fications may regulate miR sorting.17 Exosome-delivered mRNA can
be translated into proteins, and exosome-delivered miRs can target
mRNA expression in recipient cells. The online compendium Exo-
Carta (http://www.exocarta.org) provides an updated list of the bio-
molecules found in exosomes. Examples of cardiovascular effects of
EVs are shown in Table 1.

Exosome-based diagnostic
markers
The first area of clinical translation of EVs has been in diagnostics
(Figure 2). Proteins and RNAs specific to their cells of origin are in-
corporated into EVs and released into biofluids, where their con-
tents can be measured as biomarkers (Figure 3). Although several
studies evaluated serum miRs as cardiovascular markers, only rarely
was the location of these miRs inside EVs addressed. Levels of miR-1
and miR-133a were increased in sera from patients with acute MI,
unstable angina pectoris, or Takotsubo cardiomyopathy.18 Dead
cardiomyocytes were shown to release these miRs via exosomes
in vitro. Measurements of concentration gradients across the coron-
ary circulation demonstrated the myocardial release of

cardiomyocyte-enriched miR-133a and miR-499 in patients with
troponin-positive acute coronary syndromes.19 In patients with
acute MI, plasma levels of p53-responsive miRs (miR-192,
miR-194, miR-34a) inside EVs were associated with development
of heart failure.20 In patients with stable coronary artery disease, ex-
pression of miR-126 and miR-199a in circulating microvesicles, but
not freely circulating miRs, predicted the occurrence of cardiovas-
cular events.21 These findings exemplify possible roles of EVs as
diagnostic markers. However, the accuracy of a given EV-based
test mandates careful validation.

Cardiomyocyte-derived exosomes
The first study on EV secretion by cardiomyocytes reported the re-
lease of the cytoprotective heat shock proteins (HSPs) 70 and 90,
along with HSP60, a putative ‘danger signal’, via exosomes in rat car-
diomyocytes.22 Glucose deprivation caused the release of exo-
somes enriched in functional glucose transporters and glycolytic
enzymes from rat cardiomyocytes. These exosomes were interna-
lized by ECs where they increased glucose uptake and glycolytic ac-
tivity. Hyperglycaemia altered cardiomyocyte-derived exosomes in
a model of diabetes-associated cardiomyopathy.23 After externally
imposed cellular stretch, cardiomyocytes released exosomes en-
riched in functional angiotensin II type-1 receptors (AT1Rs).24 Ad-
ministration of AT1R-enriched exosomes restored blood pressure
responsiveness to angiotensin II in AT1R-KO mice. These findings
introduce the intriguing concept that endogenous surface proteins
on EVs may effect tissue-specific targeting.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 1 Cardiovascular effects of exosomes

Releasing cell type Molecular mediator(s) Stimulus Recipient cell Biological effect Ref.

Therapeutic effects

Rat CM HSP70, HSP90 Hypoxia CM Cytoprotection 22

EC miR-214 – EC Migration, angiogenesis 26

MSC miR-22 Ischaemic preconditioning CM Cardioprotection 32

Human CDC miR-146a – CM, fibroblast Cardioprotection, anti-fibrosis 11

Human CPC miR-210, miR-132 – CM, EC Cardioprotection, angiogenesis 12

Mouse CPC miR-292, miR-210, miR-103,
miR-17

Hypoxia EC, fibroblast Angiogenesis, anti-fibrosis 34

ND (plasma Exo) HSP70 RIC CM Cardioprotection 35

Mouse cardiac cells miR-144 RIC CM Cardioprotection 38

Pathogenic effects

Mouse CM Angiotensin II R1 Cardiac pressure overload CM, EC, VSMC Angiotensin II responsiveness 24

Human microvasc. EC ICAM-1 TNF-a EC Vascular inflammation 25

Mouse EC miR-146a 16-kDa N-terminal prolactin
fragment

CM Depressed CM function 27

Cardiac fibroblast miR-21-3p/miR-21* Angiotensin II CM CM hypertrophy 29

Platelet Superoxide, NO,
peroxynitrite

LPS, NO EC Apoptosis 42

CM miR-320 Hyperglycaemia EC Anti-angiogenesis 23

Examples of beneficial or pathogenic effects of exosomes are shown (CM, cardiomyocyte; EC, endothelial cell; HSP, heat shock protein; MSC, mesenchymal stem cell; NO, nitric
oxide; VSMC, vascular smooth muscle cell; RIC, remote ischemic preconditioning).
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Figure 3 Exosomes as diagnostic markers. Organs release exosomes into the circulation. Exosomes originating from different organs can be
immunoselected for proteomics and miR profiling.

Figure 2 Exosome release by different cardiac cell types. Cardiomyocytes, ECs, cardiac fibroblasts, and cardiac progenitor cells release exo-
somes. Examples of exosome-enriched miRs are shown (see Table 1).
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Endothelial cell-derived exosomes
Vascular ECs secrete vesicles that exchange biological messages with
cardiomyocytes, smooth muscle cells, and fibroblasts. Tumour necro-
sis factor (TNF)-a-treated ECs released exosomes expressing in-
creased levels of intercellular adhesion protein (ICAM)-1.25 In
another study, EC-derived exosomes stimulated angiogenesis in recipi-
ent ECs via miR-214 transfer.26 In a model of post-partum cardiomy-
opathy, the 16-kDa N-terminal prolactin fragment induced the release
of miR-146a-enriched exosomes from ECs.27 These exosomes were
internalized by cardiomyocytes where they increased miR-146a levels,
downregulated miR-146a target genes, and depressed contractile func-
tion. Blocking miR-146a using locked nucleic acids or antago-miRs at-
tenuated a post-partum cardiomyopathy like phenotype associated
with increased miR-146a expression in cardiomyocyte-restricted
Stat3-KO mice. These findings exemplify pleiotropic effects of EC-
derived exosomes on recipient ECs and cardiomyocytes.

Cardiac fibroblast-derived
exosomes
Various forms of stress in the heart—including ischaemia, hyper-
tension, and valvular dysfunction—induce hypertrophic cellular re-
sponses mediated by cross-talk among cardiomyocytes, fibroblasts,
ECs, and inflammatory cells via EVs. In response to angiotensin II,
cardiac fibroblasts secreted exosomes that stimulated angiotensin
II production and its receptor expression in cardiomyocytes and
promoted myocyte hypertrophy.28 Exosomes released from cardiac
fibroblasts contained high levels of miR-21-3p/miR-21* (one of the
‘star’ miR passenger strands that normally undergo intracellular
degradation), which promoted cardiomyocyte hypertrophy.29

Stem cell-derived exosomes
Exosomes released from bone marrow-derived CD34+ cells
reproduced the angiogenic activity of their parent cells in experi-
mental models.30 Mesenchymal stem cell-derived exosomes in-
creased ATP levels, reduced oxidative stress, and activated the
PI3K/Akt pathway to enhance cardiomyocyte viability after ischae-
mia/reperfusion (I/R).31 Ischaemic preconditioning potentiated
MSC-mediated cardioprotection via miR-22-enriched exosomes.32

These findings suggest that the benefits of MSCs may be mediated
by the exosomes they secrete.

Cardiac progenitor cell-derived
exosomes
Recent studies from our laboratories showed that exosomes released
from human CDCs,11 or from CPCs not subjected to cardiosphere
formation in vitro,12 were cardioprotective. They inhibited
stress-induced cardiomyocyte apoptosis, induced cardiomyocyte
proliferation, and stimulated angiogenesis compared with dermal
fibroblast-derived exosomes in vitro. In vivo, CDC-derived exosomes
injected into the infarct border zone reduced scar, increased viable
mass and infarcted wall thickness, and improved global heart function
in mice compared with fibroblast-derived exosomes or control

media. Pre-treatment of CDCs with the exosome biosynthesis inhibi-
tor GW4869 abolished CDC-mediated cardioprotection in vivo.
Cardiac progenitor cell-derived exosomes were similarly cardiopro-
tective in vitro. In vivo, they reduced the number of apoptotic cardio-
myocytes in the infarct border zone and scar while enhancing global
heart function after permanent coronary artery occlusion in rats.12

The two studies independently identified miR-146a as the most highly
enriched miR in both CDC-exosomes and CPC-exosomes relative to
fibroblast-exosomes. A miR-146a mimic inhibited oxidant
stress-induced cell death in rat cardiomyocytes.11 miR-146a-KO
mice had larger infarct areas compared with wild-type mice of the
same strain; in such mice, a miR-146a mimic injected at the time of
MI ‘rescued’ increased infarct size. miR-146a-deficient exosomes, de-
rived from CDCs transfected with a miR-146a hairpin inhibitor, were
less protective against oxidant stress than control CDC exosomes.
Thus, CDC-derived exosomes mediate cardioprotection, at least in
part via miR-146a transfer.

Exosomes released from CDCs altered the secretory profile of der-
mal fibroblasts.33 Priming fibroblasts with CDC-released exosomes
caused them to secrete much higher levels of stromal cell-derived
factor-1 and vascular endothelial growth factor, and dramatically chan-
ged miR profiles of fibroblast-secreted EVs. Intramyocardial injection of
CDC-exosome-primed fibroblasts, but not unprimed fibroblasts, in-
creased pump function, and vessel density while reducing scar mass
in rat hearts after chronic MI. Thus, CDC-derived exosomes converted
inert fibroblasts to therapeutically active cells.

Hypoxia stimulated exosome release from mouse CPCs and
modified their molecular content.34 Expression of pro-angiogenic
genes, anti-fibrotic genes, and a cluster of miRs was upregulated in
hypoxic CPC-exosomes. These reduced myocardial fibrosis and
enhanced pump function after I/R in vivo.

These results indicate that CPC-derived exosomes inhibit cardi-
omyocyte death during ischaemia and I/R. Limited data on their
roles in cardiac repair and regeneration are available. Angiogenic
and anti-fibrotic activities of CPC-derived exosomes likely contrib-
ute to tissue repair. We have shown that CDC-derived exosomes
injected at 21 days post-MI, a time point at which myocardial scar
is well-established, still reduce scar, and increase viable myocardial
mass in mice.11 Moreover, injected CDC-exosome-primed fibro-
blasts increased pump function and reduced scar mass in rat hearts
after chronic MI.33 These findings support the notion that exosomes
mediate therapeutic regeneration.

Circulating exosomes and
preconditioning
The exosome-rich fraction of plasma protected against myocardial
I/R injury in vivo.35 HSP70 expressed on the exosome surface bound
to toll-like receptor-4 expressed on the cardiomyocyte surface,
activating pro-survival pathways in cardiomyocytes.

Remote ischaemic preconditioning (RIPC) of the heart is induced
by brief ischaemic insults inflicted on a remote organ or myocardial
region before sustained myocardial ischaemia.36 Coronary perfusates
of isolated rat hearts exposed to three cycles of I/R were enriched in
EVs compared with hearts exposed to continuous aerobic perfusion,
and the perfusates from I/R donor hearts reduced infarct size to an
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extent comparable with ischaemic preconditioning. The protective
effect was abrogated by depleting the perfusates of EVs.37 Coronary
RIPC upregulated miR-144 precursor in exosomes and miR-144 in
myocardium.38 Systemic miR-144 administration reduced infarct
size to an extent comparable with RIPC, whereas specific miR-144
antisense oligonucleotides abolished this effect of RIPC.

Cardiosphere-derived cells administered with 30 min delay after
reperfusion in pigs reduced infarct size, a phenomenon termed ‘cel-
lular post-conditioning’ to distinguish it from conventional ischaemic
post-conditioning, which wanes earlier.39 Macrophages mediated
the benefits of CDCs in a rat model of reperfused MI, via soluble
factors, which turned out to be exosomes.40,41

Pathogenic roles of extracellular
vesicles
The complexity of EV-mediated effects is illustrated by the observa-
tions that CPC-derived, miR-146a-enriched exosomes were cardio-
protective,11,12 whereas EC-derived, miR-146a-enriched exosomes
promoted pregnancy-associated cardiomyopathy.27 Platelet-
derived exosomes mediated myocardial inflammation in an

LPS-induced model of sepsis.42 They induced EC apoptosis by gen-
erating superoxide, NO, and peroxynitrite. Circulating miR-320-
enriched exosomes inhibited EC proliferation and migration in
diabetic rats, suggesting a role in diabetic microangiopathy.23 Exo-
somes also play important roles in communication between blood
cells and vascular tissues in atherogenesis.43

Exosomes and soluble factors as
paracrine effectors
The secretome of bone marrow cells has been analysed.10 Soluble
factors released by these cells were traditionally believed to account
for their paracrine activities. However, we have shown that
exosome depletion abolishes cardioprotection mediated by
CPC-conditioned media.12 Likewise, exosome depletion abrogated
RIPC mediated by coronary perfusates of donor hearts exposed to
transient I/R.37 These findings identify exosomes as the active com-
ponent of the paracrine secretion by CPCs, and by cardiac cells in
RIPC. Exosomes protect the sequestered proteins and RNA from
degradation, facilitating their delivery to recipient cells. Exosomal
protein and miR contents differ from the secretomes (and contents)

Figure 4 Exosome-based clinical applications. Exosome-producing cells are from autologous or allogeneic donors. Exosomes are released from
either unmodified or engineered cells enriched in a therapeutic factor. Intramyocardial, but not intracoronary, delivery was beneficial in a mini-pig
MI model.50 Hypothetically, intracoronary exosomes may be poorly retained in the heart.
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of the parent cell. Further studies addressing the respective contri-
butions of exosomes and soluble factors in paracrine cell activities
are warranted.

Future perspectives
Exosomes are of interest to cardiovascular medicine for three major
reasons: in the regulation of physiological processes, as diagnostic
markers, and as therapeutic candidates. Previous clinical applications
included phase-I trials of anti-tumour vaccination in cancer patients
using exosomes from autologous dendritic cells primed with tu-
mour antigen ex vivo.44 For future applications, it will be essential
to define whether exosomes are considered the active drug compo-
nents or serve as drug delivery vehicles. Taking the latter approach,
exosome-producing cells can be engineered using electroporation
or genetic modifications to release exosomes enriched in thera-
peutic nucleic acids and proteins, respectively. Artificial exosome
mimetics manufactured using clinical-grade synthetic lipids and re-
combinant proteins to produce pharmaceutically acceptable drug
delivery vehicles are under investigation.45

Additional issues include exosome manufacturing procedures,
allogeneic cellular sources, and delivery techniques (Figure 4). Exo-
somes used in clinical trials of cancer were produced using Good
Manufacturing Practice-compatible protocols. Ultrafiltration and
size-exclusion methods are promising for large-scale exosome
preparations.46,47

In patients after acute MI, cardioprotective exosomes would be best
administered in an emergency setting. This would only be feasible using
‘off-the-shelf’ allogeneic exosomes (unless autologous exosomes were
banked in advance). Although exosomes express histocompatibility
antigens, they appear to be hypo-immunogenic. We recently com-
pared the immunogenicity of EVs from xenogeneic (human) or allo-
geneic (rat) CDCs.48 Repeated subcutaneous injections of EVs from
the human cells induced progressive humoral and cell-mediated im-
mune responses, as expected, although at lower levels compared
with injections of the parent cells. Allogeneic EVs did not induce signifi-
cant immune responses after repeated dosing. Moreover, the open-
label phase-I portion of the ALLSTAR trial showed that intracoronary
infusion of allogeneic CDCs is safe, with minimal or no measurable im-
mune reactions.49 These findings suggest that exosomes from allogen-
eic CDCs could be safely used in clinical applications.

Another issue is the delivery technique. We recently reported
that intramyocardial injection of CDC-exosomes 30 min after cor-
onary occlusion and reperfusion significantly reduced infarct size in
mini-pigs, whereas intracoronary exosomes did not.50 The reason
for this is unclear. Hypothetically, intracoronary exosomes pass
through the coronary circulation but are retained poorly in the
heart. Unpublished data from our laboratories using isolated-
perfused rat hearts show that CPC-exosomes added to the perfus-
ate are taken up by cardiomyocytes. However, these data in
isolated-perfused hearts cannot be compared directly with in vivo
data. Thus, poor efficacy of intracoronary delivery may be a major
limitation of exosomes for clinical applications, until and unless
some of the obstacles are overcome.

In conclusion, exosomes isolated from CPCs and other pro-
genitor cells hold tremendous promise for cardioprotection.
Exosome-based approaches could ‘take cells out of cell therapy’.

Intramyocardial injection is the most suitable route of exosome
administration to the heart, whereas intracoronary delivery is inef-
ficacious using current techniques.
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