Future Applications of Hybrid Interventions

Oliver Reuthebuch Clinic for Cardiac Surgery University Hospital Basel Switzerland

What is a Hybrid Intervention?

- Combination of traditionally available techniques in the catheterization laboratory as well as in the operating theatre
- Providing best available therapies for patient
- Minimizing procedural risk
- Staged by minutes, hours or days (weeks?)
- Triggered by advances in cardiac surgery (minimally invasive) and interventional cardiology (percutaneous interventions)

Universitätsspital

Common Targets of Hybrid Intervention?

Cardiac electrophysiology

Congenital heart disease

Valve disease

Coronary artery disease

Aortic disease

Prerequisites for Future Hybrid Interventions

- Set-up of Hybrid operating room
- ➤ Who owns the Hybrid OR?
- Staffing:
- Dedicated multidisciplinary team model
 - Recruited from current OR or Cath-Lab staff
 - Reduces redundancy
 - Can be difficult to maintain over time
 - Leads to the development of unique hybrid skills
- Flex-team (pooled) model
 - More common today
 - Cross-training of current OR and Cath-Lab staff
 - Requires close scheduling coordination
 - May be less efficient

Prerequisites for Future Hybrid Interventions

- Adaption of cardiac surgeons to minimally invasive procedures
- Acceptance for surgical procedures through cardiologists/patients "There is low interest on the part of the cardiologists for hybrid procedures. They would rather do it all themselves than ask a surgeon just to put a LIMA to the LAD."

Friedrich Mohr

- Reimbursement issue
- Adequate staging: antiplatelet risk and bleeding risk

Present Hybrid Interventions

TABLE 1 List of Procedures Performed in Hybrid Operating Room

Endovascular abdominal aneurysm repair Endovascular thoracic aneurysm repair Hybrid arch reconstruction Transfemoral aortic valve replacement Trans-subclavian aortic valve replacement Transapical aortic valve replacement Endovascular mitral valve repair Transpulmonary valve replacement Transapical neochord replacement for mitral valve repair Hybrid Maze procedure Atrial septal defect with septal occluder Ventricular septal defect with septal occluder Endovascular repair of coarctation of the thoracic aorta Hybrid coronary revascularization with coronary angiogram Atrial fibrillation/Flutter ablation Carotid artery stenting/carotid endarterectomy Peripheral vascular stenting CABG procedures Minimal invasive aortic valve /mitral valve procedures Hybrid therapies for congenital heart diseases Pacemaker / AICD implantation Neurovascular interventions Interventional bronchoscopy Endoleak coiling

Present Hybrid Interventions

Coronary Revascularization (1): Patient F.S., * 1931

MIDCAB: LIMA-LAD

PCI/Stent RCA

Present Hybrid Interventions

Coronary Revascularization (2): Patient A.N., * 1962

MIDCAB: LIMA-Y-LAD-D

PCI/Stent RCA

- Universitätsspital Basel

Coronary Revascularization (3): Multi-Vessel

TECAB

- Universitätsspital Basel

Results

Table 1. Results of Hybrid Coronary Revascularization									
Author (Ref. #)	Year	Patients (n)	Mortality (30-Day)	In-Hospital Morbidity (%)	LIMA Patency (Immediate) (%)	PTCA/Stent Restenosis (6 Months) (%)	Mean Follow-Up (Months)	Event-Free Survival (%)	
MIDCAB + PTCA									
Lloyd et al. (20)	1999	18	0	11	100	6 (TLR)*	18	89	
Isomura et al. (21)	2000	37	0	NA	100	NA	0-24	92	
de Cannière et al. (22)	2001	20	0	15	100	5	24	95	
Presbitero et al. (23)	2001	42	2	12	92	14 (TLR)†	18	83	
Cisowski et al. (24)	2002	50	0	4	100	10	12	87	
Stahl et al. (25)	2002	54	0	0	100	NA	12	87	
MIDCAB + PTCA + PCI									
Angelini et al. (1)	1996	6	0	NA	NA	NA	NA	NA	
Lewis et al. (26)	1999	14	0	21	100	0	1-44	93	
Wittwer et al. (27)	2000	35	0	0	100	7	11	87	
Riess et al. (28)	2002	57	0	7	98	24	24	NA	
MIDCAB + PCI									
Zenati et al. (29)	1999	31	0	6	100	10	11	90	
Us et al. (30)	2006	17	0	0	100	18	21	87	
Gilard et al. (31)‡	2007	70	1.4	4.2	NA	2.3	33	97	
Kon et al. (32)‡	2007	15	0	0	100	3	12	93	
TECAB									
Lee et al. (33)	2004	6	0	0	NA	16	12	NA	
Davidavicius et al. (34)	2005	20	0	0	100	0	19	100	
Kiaii et al. (35)	2005	1	0	0	100	0	6	100	
Katz et al. (36)§	2006	27	0	3.7	96 (3 months)	30 (BMS), 23.5 (DES)	3	70	
Vassiliades et al. (37)‡	2006	47	0	0	99	6.6	7	90	
Bonatti et al. (38)	2007	5	0	0	100	0	6	100	

*Calculated on a per-patient basis. †TLR including revision or stenting of LIMA graft. ‡All DES used for PCI. §DES (63% of patients).

BMS = bare-metal stent; DES = drug-eluting stent; LIMA = left Internal mammany artery; MIDCAB = minimally invasive direct coronary artery bypass grafting; NA = not applicable; PCI = percutaneous coronary intervention; PTCA = percutaneous transluminal coronary angloplasty; TECAB = totally endoscopic coronary artery bypass; TLR = target lesion revascularization.

Byrne JG. Hybrid Cardiovascular Procedures. JACC Intv 2008;1:459-68

Aortic Valve/PCI

Aortic Valve/PCI

Small upper antero-lateral thoracotomy

Aortic Valve/PCI: Sutureless Valves

Sorin *Perceval*

Edwards Intuity

- Universitätsspital Basel

Aortic Valve/PCI: Sutureless Valves

Sorin Perceval

Edwards Intuity

Universitätsspital Basel

Aortic Valve/PCI: Rationale

- Patients with poor conduit quality for CABG surgery
 - poor SVG failure rate at 1 year 30%*
- Convert high-risk valve/CABG into a lower risk isolated valve
 - valve/CABG has twice the mortality rate of isolated valve surgery**
- Convert reoperative valve/CABG into reoperative isolated valve surgery

* Magee MJ. Coronary artery bypass graft failure after on-pump and off-pump coronary artery bypass: findings from PREVENT IV. Ann Thorac surg 2008;85:494-9 ** Hannan EL. Risk index for predicting in-hospital mortality for cardiac valve surgery. Ann Thorac Surg 2007;83:921-9

Mitral Valve/PCI: Rationale

- Mitral valve repair is superior to replacement
- Minimally invasive is superior to sternotomy

Atrial Fibrillation: Rationale Surgical

- Lone atrial fibrillation
- Closed chest armamentarium is available or under invention
- Surgical approach is faster
- Surgical approach has no radiation exposure
- Surgical approach is more extensive
- Percutaneous approach may create some lesions more easily

Atrial Fibrillation: Rationale Percutaneous

- Percutaneous approach may create some lesions more easily:
 Coronary sinus, cavotricuspid isthmus
- Mapping to ensure PVI and block lines
- Potential for complex mapping of rotors

Atrial Fibrillation: Results

Table 2 List of reported hybrid AF studies

Author	Year	Patients	Mean age	AF duration (years)	Mean LA diameter (mm)	Persistent AF (%)	Access	Sinus rhythm	
Mahapatra et al.	2011	15	59.5	5.4	52.3	100	B-Thor	86.7	
Krul et al.	2011	31	57	8	47	48	B-Thor	86	
La Meir et al.	2012	35	57.1	5	52	54	B -Thor	85.7	
Pison et al.	2012	26	56.8	5.6	43.1	42	B-Thor	92	
La Meir et al.	2012	19	61.2	5	49	74	R-Thor	36.8	
Zembala et al.	2012	27	55.2	3.5	45.5	100	LAP	66.5	
Muneretto et al.	2012	36	62.3	6.1	50.3	100	R-Thor	77.7	
Gersak et al.	2012	50	56.4	5	48	94	LAP	88	
Gehi et al.	2013	101	62.9	5.9	51	84	SubX	60.7	
Bisleri et al.	2013	45	62.3	7	51.3	100	R-Thor	88.9	
Gilligan et al.	2013	42	60	3.9	45	81	LAP	95	
Gersak et al.	2014	73	56.3	4.3	46.5	100	LAP	80	
AF, atrial fibrillation; LA, left atrial. Adapted with permission from (8).									

Driver K. Hybrid approaches in atrial fibrillation: why, where and who? J Thorac Dia 2015;7(2):159-164

- Universitätsspital Basel

Aortic Interventions

Bavaria J. Classic hybrid evolving approach to distal arch aneurysms. Toward the zone zero solution. J Thorac Cardiovasc Surg 2010;140:S77-80

Aortic Interventions: Results

TABLE 3. Postoperative outcomes

Outcomes	Hybrid 27		Туре 1 23		Туре 2 4	
N						
Thirty-day mortality	3	11%	3	13%	0	
Stroke	3	11%	3	13%	0	
Permanent paraplegia	2	7%	2	9%		
Transient neurologic deficit	3	11%	2	9%	1	25%
Renal failure	2	7%	2	9%	0	
Renal failure requiring new hemodialysis	1	4%	1	4%	0	
Reop for bleeding	0	0%				
Atrial fibrillation	12	44%	10	43%	2	50%
Mean hospital stay (d)	17.2	± 14.0	16.3	± 14.0	22.0	± 9.6

Bavaria J. Classic hybrid evolving approach to distal arch aneurysms. Toward the zone zero solution. J Thorac Cardiovasc Surg 2010;140:S77-80

Universitätsspital Basel

Congenital Interventions: Hypoplastic left heart

Figure 1. Hybrid stage I palliation for hypoplastic left heart syndrome. (A) In a hybrid setting and after the LPA and RPA bands (black arrow) have been placed via a small median sternotomy off cardiopulmonary bypass, an angiogram is performed through a short sheath placed directly into the main pulmonary artery above the valve after a guide wire has been placed through the PDA into the descending aorta. (B) A balloon expandable stent (white arrows) was chosen because the PDA was tortuous and displayed some narrowing. The red arrow represents retrograde flow to the aortic arch. (C) A final angiogram is performed after deployment to demonstrate the stent covering the entire length of the PDA (white arrows). LPA: left pulmonary artery; RPA: right pulmonary artery; PDA: patent ductus arteriosis.

Figure 5. Hybrid stage 1 procedure for hypoplastic left heart syndrome. It combines bilateral pulmonary artery banding through sternotomy and ductal stenting. Reprinted from Galantowicz et al⁵² with permission of the publisher. Copyright © 2008, Elsevier.

Congenital Interventions: VSD

Figure 3. Perventricular closure of a large muscular ventricular septal defect. The defect is imaged in two different planes (A, B) with the site of proposed ventricular puncture indicated by digital pressure on the right ventricular wall (C). Once the wire is across the defect (D), the sheath is advanced into the left ventricle and the device advanced through the sheath (E). Initially the left ventricular device is deployed (F) followed by the right ventricular disk (G), with the device sitting in a good position across the defect following release (H).

Conclusion:

> Hybrid interventions will overall decrease in number

- advent of future interventional techniques
- insufficient adaption of cardiac surgeons to MIC procedures
- high planning hassle
- complex staff training
- Costs/reimbursement issue
- Staging (antiplatelet therapy-bleeding)

Conclusion:

Sloping downwards

- hybrid coronary interventions
- hybrid coronary/valvular interventions
 - except: in combination with valvular reconstruction

Sloping upwards

- electrophysiologic hybrid procedures
- aortic interventions
- congenital interventions

Thank you very much for your attention!

