Exosomes as therapeutic agents

Eduardo Marbán, M.D., Ph.D.

Director, Cedars-Sinai Heart Institute Los Angeles, CA

Disclosure: founder & SAB chair, Capricor Inc.

Cardiosphere-derived cells (CDCs)

First described by RR Smith et al., *Circulation* 2007; methods and bioactivity reproduced by at least 26 labs worldwide

Cell Type	Human heart stem cell/cardiac stromal cell	
Characteristics	CD105+, CD45-; secreted SDF-1 and exosomes containing distinctive m	iRs
Clinical Trials	CADUCEUS -completed-autologous phase 1. Twenty-five patient study showed regeneration in CDC-treated post-MI subjects with mild HFrEF	
	ALLSTAR-phase 1 (n=14) completed, now in phase 2- allogeneic CDCs post-MI with mild HFrEF	5
	DYNAMIC -ongoing-phase 2a/b study of allogeneic CDCs in patients with advanced HFrEF	ith
	HOPE-Duchenne-allo CDCs for DMD cardiomyopathy, enrolling	
Mechanism of action	 Paracrine regenerative effects Promote cardiomyomyogenesis Prevent cardiomyocyte apoptosis Anti-fibrotic Anti-inflammatory Heart Institution 	SINAI.

Disadvantages of cells for therapeutics

- Cells work, but fragile living material
- QA/QC, release & identity criteria complex
- Suboptimal in closed compartments
- Immune memory?

Cell-free therapeutics

- If effects do not require permanent presence of transplanted cells, why use cells?
- Is there a single entity that can mimic all the salient benefits?

Exosomes are bioactive nanoparticles

- 30-150 nm particles
- Present in all body fluids
- Released by nearly all cell types
- Loaded with miRs and other bioactive contents
- Payload very cell-specific

Blocking exosome biosynthesis abrogates CDC benefit

CDC-exosomes exhibit a distinctive miR profile

...but miRs are minority of exosomal RNA

Marbán lab, unpublished

Plentiful Y RNA fragment regulates IL-10 expression

Y RNA abundance 400000 <u>of counts</u> 350000 CDC-exo 300000 250000 NHDF-exo 200000 150000 gZ 100000 50000 0 Yb Yc Yd

Y RNA alignment reveals Yb homology to Y4

Predicted structure

IL-10 transcript (left) and secreted protein (right) in macrophages

Heart Institute

L. Cambier & G. DeCouto, Marbán lab, unpublished

Working hypotheses

- No single RNA species can account for all the benefits of exosomes
- Individual miRs or other RNA species may prevail in any given setting
- The totality of exosomal contents required for full manifestation of bioactivity

Exosome payloads mimic CDC effects on multiple biological processes **CDCs** CDC-XO $\sqrt{11,12}$ $\sqrt{1,2}$ • Regenerative $\sqrt{11,12}$ $\sqrt{1-4}$ • Antifibrotic $\sqrt{11,13}$ $\sqrt{3-5}$ • Anti-apoptotic Angiogenic $\sqrt{1,6}$ $\sqrt{11}$ $\sqrt{12,13}$ $\sqrt{9}$ • Anti-inflammatory **v** 9,10 $\sqrt{12}$ Immunomodulatory

RR Smith et al, *Circ* 2007; 2. Makkar et al., *Lancet* 2012; 3. E. Tseliou et al., *PLoSOne* 2014; 4. E. Tseliou et al., *BRIC* 2014; 5. T-S Li et al, *JACC* 2012; 6. I. Chimenti et al, *Circ Res* 2010; 7. K. Malliaras et al., *Circ* 2012; 8. K. Malliaras et al., *EMBO Mol Med* 2013; 9. M. Aminzadeh et al., *EHJ* 2014; 10. L. Lauden et al, *Circ Res* 2013; 11. A. Ibrahim et al. *Stem Cell Reports* 2014;
 M. Aminzadeh et al., *Circulation AHA abstracts* 2015; 13. G. DeCouto et al., *Circulation Cell Reports* 2015; ISC CEDARS/SINAL. *AHA abstracts* 2015

Diverse *non-cardiac* effects of CDC exosomes

CEDARS-SINAL. Heart Institute

Diverse *non-cardiac* effects of CDC exosomes

ULDARS'SINAL. Heart Institute

Cardioprotective effects of bone marrow-derived macrophages polarized by CDC exosomes

M_{CDCexo} reduce neutrophil-induced myocyte death

CDCexo elicit a distinct gene expression profile in M_{CDCexo}

G. DeCouto, Marbán lab, unpublished

Regeneration in newts>>in mammals

Regenerating retina

Regenerating limb

Regenerating lens

Chiba lab, Tsukuba University, Japan

Is newt biology translatable to mammals?

- Separated from mammalian lineage ~300 million years ago
- Can newt cells make exosomes? Are the exosomes biologically active in mammals?

Newt A1 cells make exosomes that are regenerative in rats

Rat cardiomyocyte proliferation in vitro

Rat heart morphology two weeks post-infarction: Newt A1- vs. NHDF-exosomes

% Scar Area

Disadvantage for cardiac applications: exosomes work IM but not IC

R. Gallet et al., Marbán lab, EHJ in press 2016

Will therapeutic exosomes ever reach the clinic?

CDC-exosome clinical manufacturing

Ongoing projects

- Mechanistic studies of exosomes and their contents
- Product development of exosomes as next-gen therapeutic candidates
- Focal cardiac applications
- Extracardiac applications (diseases with prominent fibrosis, inflammation)

Acknowledgments

Cedars-Sinai Heart Institute

Ahmed Ibrahim Ryan Middleton Mark Aminzadeh Eleni Tseliou Geoffrey DeCouto Linda Cambier Romain Gallet

<u>Capricor</u>

Linda Marbán Rachel R. Smith Michelle Kreke Luis Rodriguez Borlado

<u>Funding</u>

NIH California Institute for Regenerative Medicine

in the Advanced Health Sciences Pavilion

Properties of CDCs

- CD105+/CD45- cells^{1,2} of intrinsic cardiac origin³
- Not MSCs, fibroblasts, myofibroblasts, or cardiomyocytes¹
- Shrink scar and increase viable myocardium^{1,2,4-8}
- Functionally superior to other clinically-applied cells⁵
- Multipotent & clonogenic,⁴ but long-term engraftment & differentiation not necessary for benefit⁶⁻⁹

1. RR Sm&n kit, *C*Subpopulation, *irrelevant* ¹⁰ *PLoS One* 2010; 5. T-S Li et al, *JACC* 2012; 6. I. Chimenti et al, *Circ Res* 2010; 7. K. Malliaras et al, *Circ* 2012; 8. K. Malliaras et al., *EMBO Mol Med* 2013; 9. P Johnston et al, *Circ* 2010; 10. K. Cheng et al., *JAHA* in press

- CD105+/CD45- cells^{1,2} of intrinsic cardiac origin³
- c-kit⁺ subpopulation irrelevant⁴
- Not MSCs, fibroblasts, myofibroblasts, or cardiomyocytes¹
- Multipotent & clonogenic⁵

1. RR Smith et al, *Circ* 2007; 2. Makkar et al., *Lancet* 2012; 3. A White et al., *EHJ* 2011; 4. K. Cheng et al., *JAHA* 2014; 5. D Davis *PLoS One* 2010

